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About Me

• I am an engineer, researcher, technical fellow and CVP in Microsoft
• I lead the CoreAI Post-training team
• I got my PhD in HKUST, worked in MSRA, and moved to USA in 2012
• Nearly 20 years at Microsoft

• Split between MSR & Product teams, now in product team
• More passionate about delivering products
• Engages in interesting projects while developing product

• LoRA: GPT-3 customization in 2020
• MuP: GPT pre-training in 2020
• DeBERTa: Supported multiple NLU products in 2022
• Github Copilot GA: 2022
• Phi-3/Phi-4: Data synthesis for LLM and SLM: 2024
• Rho-1: Neirup 2025 best paper runner up
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Data



RL Data

1. Verifiable
• Math
• Code
• …

2. Non-verifiable
• So many open and subjective data

• Style, writing, safety,…
• Rubrics
• Data synthesis



Rubrics: Scorable with Steerability

• Rubrics are design to be 
• highly detailed and interpretable, 
• Structured and enable precise grading

• Tackling open-domain and complex tasks
• Spanning hours, days, or even months

• Quality is more important than Quantity
• Professional experts to curate and validate data
• Expensive and hard to scale



Then

How many data point we need? 

How about only 1?



RLVR with One Example

Data/Method MATH500 AIME24

Base 36.0 6.7

Format reward 65.0 8.3

π1 74.0 20.4

π17 67.2 13.3

1.2k DSR-sub 75.2 18.8

Ranking the training data by the variance 
of historical training accuracy si.



RL Data

• The power of exploration
• Not just memorization
• RL explore the building blocks for math 

problem
• Extremely high data efficiency

• 1 sample to figure out most math building 
blocks

• Quality matter
• High entropy to encourage exploration
• Can’t be too hard (pass-rate = 0), or too easy 

(without negative feedback)



Data Mix
Curating high quality data often outperforms alchemy in
parameter tuning for the training.

Tips:
1. Hard problem are usually more

useful for powerful models.
2. The goodness of data is also model

dependent.
3. Combine the use of real data and

synthetic data. Real data helps in
real cases, while synthetic data can
be formalized in multiple style.

4. Use powerful models as judger to
generate more data.



Data Synthesis



Data Synthesis: Agentic Data

• We first make buildable repo with image, and then synthesis 
various tasks with verifiable rewards

• Construct various synthetic tasks in the environment to
• Improve final tasks
• Improve coding/agentic capability

• Kim-K2 agentic data synthesis pipeline

We often put the 
best people in data 

synthesis



Grader



Grader & Eval: The feedback to RL experience

• If you know how and what to grade,  you solve half of the problem

• Most of our work is 
• figure out what to grade, 
• build up a new grader to combine with current graders 
• prepare the data to be graded and trained

• Many different graders from
• Different domains: finance, medical, coding, consultant, Stem, law, etc
• Different problems for each domain
• Different application/product constraints



Product Grader is Complicated: SWE

• Multiple graders in the product constraints
• Pass-rate : PR can pass all the test
• More than 50% are open questions such as QA
• Multi-turn : Interaction to refine the PR or QA
• Format : Presentation such as markdown and table.
• Behavior : Show progress during execution,  summarize the PR at the end
• Length : conciseness.  Too verbose is generally negative.  Time-to-PR. 
• Ethics : You cannot say something very bad



More Example from SWE Model

• Coding-Task Grader

o Unit-Test Grader -> hard performance requirement

o Patch Grader -> final patch in a good format

o Rollout Grader -> using tools accurately

o Behavior Grader -> nicely test the code after fix and write a summary

o User Experience Grader -> follow user instructions step by step, report 

progress

o Task-specific grader -> Repo set up tasks

o …

How to balance all of these but learn all of them?

Rubric

LLM 
Grader

Verifier



How to Balance multiple Grader

• Relative Ranking
• It is hard for Early policy to pass all 

graders

• Curriculums Learning
• Adjust the importance of each grader 

during training

• Grader dependency
• Sequential execution on dependent 

graders
• Parallel execution on others for speed

Unit Test Grader

Patch Grader

Rollout Grader

……

Pass or Fail

Continuous
Reward

Pass or Fail



Cheating is normal in Grader 
Model is so intelligent in cheating, a lot of surprise we have seen here!

• Model changed the test file inside the
repo as an always pass hello-world test,
so it gets 100 score every time.

• When internet access is given, model
tries to curl/wget the golden patch online
from Github/Stackoverflow to cheat the
solution.



What we generally did to avoid Hacking

• Use another model to regulate reward model, pair with rubrics
• Check final answer
• Check rollout carefully
• Check behavior

• Hide test case in the docker container, remove test files from PR
• Large penalty for cheating 



Efficiency and how to make training work is the 
other 50% of our daily work

Data (incl. grader) is the 50% of our daily work



How to make training more efficient? 
RL is very expensive, especially in the sampling. Model needs to explore
good training samples for itself.

What we did?
• Strong asynchronous RL training infra
• Encourage policy exploration
• Control sampling cost
• LoRA for RL 



Asynchronous RL Training

Asynchronous RL training infra enables 
large scale RL training.
• Roller(sampler) are often the 

bottleneck, especially if the data 
requires high reasoning and is often 
long in solution. 

• We usually assign more GPUs into 
roller to keep the trainer busy with 
incoming usable samples.



Asynchronous RL

TrainersData

Roller 1

Roller 2

Roller N

…
…

Rollers

Rollouts

Weights Sync

G1

Graders

GK

…
…

Environment



Exploration?

How to encourage policy 
model to explore different 
solutions?
• Exploration define how much 

we can learn from RL



Effective Policy Exploration

• It is essential for the model to prioritize following instructions first.
• If it does not, continue training the model to improve its instruction-following abilities.

• What can help enhance exploration:
• Prompt-based approaches: using a variety of prompts often proves beneficial. 

• Create prompt variations through rewriting.
• Include additional guiding prompts to encourage the model to approach solutions in 

diverse ways.
• Incorporate user interaction to introduce different prompt variants.

• Control over CoT length.
• Noise-based methods (adversarial training): 

• Introduce noise throughout the model.
• Tool-based strategies: equip the model with various tools to handle the same task.



Effective Policy Exploration: Tool Generalization

• Robust IF capability is essential for adapting to new 
tools

• Promote model reflection and quick self-correction 
following tool errors

• Train using a variety of tool sets
• Build multiple tool sets for the model to apply 

within the same task

• Generate tool variations, including:
• Different orders of tool functions
• Variations in tool function names
• Changes in tool function arguments
• Diverse tool descriptions

• Enable support for third-party tools (MCP)



Solution length define the Sampling Efficiency

• Goal: Our objective is for the model to complete the task as quickly as possible.

• Challenge: Balancing Performance and Cost

• The model can attempt several solutions within a single rollout to improve accuracy, 
but this might result in excessively long solutions.

• If the cost penalty is too low, the model could use unlimited tokens to finish the 
task, causing solution lengths to grow uncontrollably.

• Conversely, if the cost penalty is too high, the model might minimize reasoning 
efforts by producing overly short solutions to avoid penalties.



We Control Solution Length

• In Training
• Cap long rollout
• Additional token cost

• In Eval
• Consider both pass-rate and 

solution length

Length Explosion

Length Controlled



Long Context Issue?

• 1 million token is still not enough
• User may not close the window while keep asking. 
• Some files might be very long and use up to the context. 

• Use a convo summarizer to repeated summarize the History/CoT when it reaches a 
certain maximum. 



LoRA on RL

• Why LoRA in RL Training?

• Regularization & Generalization

• Less GPU requirement and more 
efficient

• We set our baseline with sub-optimal 
efficient setting for derisk experiments



Pre-training, Post-training, and RL

• Pre-training
• Figure out the key Lego bricks and efficient way 

of assembling from the data

• Post-training
• Build a lego world aligned to our goals/tasks

• RL
• Playing the logo creation game millions of time, 

get feedback,  to find the best by experience
• Exploration encourage creativity (Alpha go’s 

move 37)



Look Ahead



Look Ahead : Testing-time Scaling
• Larger and deeper Model

• Make the execution wider
• Parallel thinking, but make it part of learning
• Multi-agent interaction, orchestration in learning

• Make the execution longer
• From minutes to days
• Longer context
• memory



Look Ahead : Training Time Scaling
• Data Synthesis

• We are often limited by data instead of compute, and run out of data
• Our best model is always built from the best data
• Synthesize is the scalable way to produce the agentic data

• RL
• Able to obtain robustness from more compute
• If you make it right,  it will make it right until model limit
• Steerability to fix product issue quickly
• RL could be the way to break the wall between pre-training and post-training

• Self-improvement
• Data + RL
• Self-reflection,  self-criticism, and model-wise interaction
• Weak learners to build stronger learners



Training Model
• Training Models is hard

• You often wake up at 3am to look at the job, and discussed with your team
• You are often struggle with infrastructure instability
• You are often struggle with slow or no progress

• Training Models is fun
• Having opportunities to train models with many GPUs is precious
• We feel fulfilled when the trained models beat the baseline
• We feel excited when the trained model was used in product



Questions? 

Thanks!
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