
Challenges and Lessons from
Training Agentic Models

Weizhu Chen
10/13/2025

Disclaimer: all views expressed here are solely those of the guest and not
representative of their company

About Me

• I am an engineer, researcher, technical fellow and CVP in Microsoft
• I lead the CoreAI Post-training team
• I got my PhD in HKUST, worked in MSRA, and moved to USA in 2012
• Nearly 20 years at Microsoft

• Split between MSR & Product teams, now in product team
• More passionate about delivering products
• Engages in interesting projects while developing product

• LoRA: GPT-3 customization in 2020
• MuP: GPT pre-training in 2020
• DeBERTa: Supported multiple NLU products in 2022
• Github Copilot GA: 2022
• Phi-3/Phi-4: Data synthesis for LLM and SLM: 2024
• Rho-1: Neirup 2025 best paper runner up

An Example Coding-Agent

Linux System

Language Model

Problem Prompt Code Repository
Environment Simulator

Tool Calls

Tool Responses

Model Patch +
PR Description

Unit test
pass or fail?

Agentic Training

Goal
Oriented

Tool Usage
Plan

Reasoning

User
Interaction

Data
Grader
Eval

Efficiency
Environment

Data

RL Data

1. Verifiable
• Math
• Code
• …

2. Non-verifiable
• So many open and subjective data

• Style, writing, safety,…
• Rubrics
• Data synthesis

Rubrics: Scorable with Steerability

• Rubrics are design to be
• highly detailed and interpretable,
• Structured and enable precise grading

• Tackling open-domain and complex tasks
• Spanning hours, days, or even months

• Quality is more important than Quantity
• Professional experts to curate and validate data
• Expensive and hard to scale

Then

How many data point we need?

How about only 1?

RLVR with One Example

Data/Method MATH500 AIME24

Base 36.0 6.7

Format reward 65.0 8.3

π1 74.0 20.4

π17 67.2 13.3

1.2k DSR-sub 75.2 18.8

Ranking the training data by the variance
of historical training accuracy si.

RL Data

• The power of exploration
• Not just memorization
• RL explore the building blocks for math

problem
• Extremely high data efficiency

• 1 sample to figure out most math building
blocks

• Quality matter
• High entropy to encourage exploration
• Can’t be too hard (pass-rate = 0), or too easy

(without negative feedback)

Data Mix
Curating high quality data often outperforms alchemy in
parameter tuning for the training.

Tips:
1. Hard problem are usually more

useful for powerful models.
2. The goodness of data is also model

dependent.
3. Combine the use of real data and

synthetic data. Real data helps in
real cases, while synthetic data can
be formalized in multiple style.

4. Use powerful models as judger to
generate more data.

Data Synthesis

Data Synthesis: Agentic Data

• We first make buildable repo with image, and then synthesis
various tasks with verifiable rewards

• Construct various synthetic tasks in the environment to
• Improve final tasks
• Improve coding/agentic capability

• Kim-K2 agentic data synthesis pipeline

We often put the
best people in data

synthesis

Grader

Grader & Eval: The feedback to RL experience

• If you know how and what to grade, you solve half of the problem

• Most of our work is
• figure out what to grade,
• build up a new grader to combine with current graders
• prepare the data to be graded and trained

• Many different graders from
• Different domains: finance, medical, coding, consultant, Stem, law, etc
• Different problems for each domain
• Different application/product constraints

Product Grader is Complicated: SWE

• Multiple graders in the product constraints
• Pass-rate : PR can pass all the test
• More than 50% are open questions such as QA
• Multi-turn : Interaction to refine the PR or QA
• Format : Presentation such as markdown and table.
• Behavior : Show progress during execution, summarize the PR at the end
• Length : conciseness. Too verbose is generally negative. Time-to-PR.
• Ethics : You cannot say something very bad

More Example from SWE Model

• Coding-Task Grader

o Unit-Test Grader -> hard performance requirement

o Patch Grader -> final patch in a good format

o Rollout Grader -> using tools accurately

o Behavior Grader -> nicely test the code after fix and write a summary

o User Experience Grader -> follow user instructions step by step, report

progress

o Task-specific grader -> Repo set up tasks

o …

How to balance all of these but learn all of them?

Rubric

LLM
Grader

Verifier

How to Balance multiple Grader

• Relative Ranking
• It is hard for Early policy to pass all

graders

• Curriculums Learning
• Adjust the importance of each grader

during training

• Grader dependency
• Sequential execution on dependent

graders
• Parallel execution on others for speed

Unit Test Grader

Patch Grader

Rollout Grader

……

Pass or Fail

Continuous
Reward

Pass or Fail

Cheating is normal in Grader
Model is so intelligent in cheating, a lot of surprise we have seen here!

• Model changed the test file inside the
repo as an always pass hello-world test,
so it gets 100 score every time.

• When internet access is given, model
tries to curl/wget the golden patch online
from Github/Stackoverflow to cheat the
solution.

What we generally did to avoid Hacking

• Use another model to regulate reward model, pair with rubrics
• Check final answer
• Check rollout carefully
• Check behavior

• Hide test case in the docker container, remove test files from PR
• Large penalty for cheating

Efficiency and how to make training work is the
other 50% of our daily work

Data (incl. grader) is the 50% of our daily work

How to make training more efficient?
RL is very expensive, especially in the sampling. Model needs to explore
good training samples for itself.

What we did?
• Strong asynchronous RL training infra
• Encourage policy exploration
• Control sampling cost
• LoRA for RL

Asynchronous RL Training

Asynchronous RL training infra enables
large scale RL training.
• Roller(sampler) are often the

bottleneck, especially if the data
requires high reasoning and is often
long in solution.

• We usually assign more GPUs into
roller to keep the trainer busy with
incoming usable samples.

Asynchronous RL

TrainersData

Roller 1

Roller 2

Roller N

…
…

Rollers

Rollouts

Weights Sync

G1

Graders

GK

…
…

Environment

Exploration?

How to encourage policy
model to explore different
solutions?
• Exploration define how much

we can learn from RL

Effective Policy Exploration

• It is essential for the model to prioritize following instructions first.
• If it does not, continue training the model to improve its instruction-following abilities.

• What can help enhance exploration:
• Prompt-based approaches: using a variety of prompts often proves beneficial.

• Create prompt variations through rewriting.
• Include additional guiding prompts to encourage the model to approach solutions in

diverse ways.
• Incorporate user interaction to introduce different prompt variants.

• Control over CoT length.
• Noise-based methods (adversarial training):

• Introduce noise throughout the model.
• Tool-based strategies: equip the model with various tools to handle the same task.

Effective Policy Exploration: Tool Generalization

• Robust IF capability is essential for adapting to new
tools

• Promote model reflection and quick self-correction
following tool errors

• Train using a variety of tool sets
• Build multiple tool sets for the model to apply

within the same task

• Generate tool variations, including:
• Different orders of tool functions
• Variations in tool function names
• Changes in tool function arguments
• Diverse tool descriptions

• Enable support for third-party tools (MCP)

Solution length define the Sampling Efficiency

• Goal: Our objective is for the model to complete the task as quickly as possible.

• Challenge: Balancing Performance and Cost

• The model can attempt several solutions within a single rollout to improve accuracy,
but this might result in excessively long solutions.

• If the cost penalty is too low, the model could use unlimited tokens to finish the
task, causing solution lengths to grow uncontrollably.

• Conversely, if the cost penalty is too high, the model might minimize reasoning
efforts by producing overly short solutions to avoid penalties.

We Control Solution Length

• In Training
• Cap long rollout
• Additional token cost

• In Eval
• Consider both pass-rate and

solution length

Length Explosion

Length Controlled

Long Context Issue?

• 1 million token is still not enough
• User may not close the window while keep asking.
• Some files might be very long and use up to the context.

• Use a convo summarizer to repeated summarize the History/CoT when it reaches a
certain maximum.

LoRA on RL

• Why LoRA in RL Training?

• Regularization & Generalization

• Less GPU requirement and more
efficient

• We set our baseline with sub-optimal
efficient setting for derisk experiments

Pre-training, Post-training, and RL

• Pre-training
• Figure out the key Lego bricks and efficient way

of assembling from the data

• Post-training
• Build a lego world aligned to our goals/tasks

• RL
• Playing the logo creation game millions of time,

get feedback, to find the best by experience
• Exploration encourage creativity (Alpha go’s

move 37)

Look Ahead

Look Ahead : Testing-time Scaling
• Larger and deeper Model

• Make the execution wider
• Parallel thinking, but make it part of learning
• Multi-agent interaction, orchestration in learning

• Make the execution longer
• From minutes to days
• Longer context
• memory

Look Ahead : Training Time Scaling
• Data Synthesis

• We are often limited by data instead of compute, and run out of data
• Our best model is always built from the best data
• Synthesize is the scalable way to produce the agentic data

• RL
• Able to obtain robustness from more compute
• If you make it right, it will make it right until model limit
• Steerability to fix product issue quickly
• RL could be the way to break the wall between pre-training and post-training

• Self-improvement
• Data + RL
• Self-reflection, self-criticism, and model-wise interaction
• Weak learners to build stronger learners

Training Model
• Training Models is hard

• You often wake up at 3am to look at the job, and discussed with your team
• You are often struggle with infrastructure instability
• You are often struggle with slow or no progress

• Training Models is fun
• Having opportunities to train models with many GPUs is precious
• We feel fulfilled when the trained models beat the baseline
• We feel excited when the trained model was used in product

Questions?

Thanks!

	Slide 1: Challenges and Lessons from Training Agentic Models
	Slide 2: About Me
	Slide 3: An Example Coding-Agent
	Slide 4
	Slide 5: Data
	Slide 6: RL Data
	Slide 7: Rubrics: Scorable with Steerability
	Slide 8: Then How many data point we need? How about only 1?
	Slide 9: RLVR with One Example
	Slide 10: RL Data
	Slide 11: Data Mix
	Slide 12: Data Synthesis
	Slide 13: Data Synthesis: Agentic Data
	Slide 14: Grader
	Slide 15: Grader & Eval: The feedback to RL experience
	Slide 16: Product Grader is Complicated: SWE
	Slide 17: More Example from SWE Model
	Slide 18: How to Balance multiple Grader
	Slide 19: Cheating is normal in Grader
	Slide 20: What we generally did to avoid Hacking
	Slide 21: Efficiency and how to make training work is the other 50% of our daily work
	Slide 22: How to make training more efficient?
	Slide 23: Asynchronous RL Training
	Slide 24: Asynchronous RL
	Slide 25: Exploration?
	Slide 26: Effective Policy Exploration
	Slide 27: Effective Policy Exploration: Tool Generalization
	Slide 28: Solution length define the Sampling Efficiency
	Slide 29: We Control Solution Length
	Slide 30: Long Context Issue?
	Slide 31: LoRA on RL
	Slide 32: Pre-training, Post-training, and RL
	Slide 33: Look Ahead
	Slide 34: Look Ahead : Testing-time Scaling
	Slide 35: Look Ahead : Training Time Scaling
	Slide 36: Training Model
	Slide 37: Questions? Thanks!

