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The AlphaGo Analogy

Step 1: Pretrain on high-quality human data

Step 2: Enable large-scale inference compute

Step 3: Recursive Self-Improvement (Self Play)
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Option 1: Someone who, over a large enough sample size, 

wins head-to-head vs. any other player

Option 2: Someone who makes more money playing poker 

than anyone else

Who is the better poker player?
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Minimax Equilibrium
Minimax Equilibrium: a set of 
strategies in which no player can 
improve by deviating

In two-player zero-sum games, 
playing a minimax equilibrium 
ensures you will not lose in 
expectation

Exploitability: How much we’d 
lose to a best response
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Minimax Equilibrium

“Poker is simple, as your 
opponents make mistakes, 
you profit.”

-Ryan Fee’s Poker Strategy Guide

Round 1 Round 2 Round 3

Us

Best 
Response

Our Exploitability = 0



Self-play in two-player zero-sum games

▪ In self-play, an agent gradually improves by playing 

against copies of itself

▪ Initial strategy can be completely random

▪ In balanced two-player zero-sum games, sound self-play 

provably converges to a minimax equilibrium

▪ Thus, given sufficient memory and compute, any finite 

two-player zero-sum game can be “solved” via self-play
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Self-Play in 2p0sum Perfect-Info Games

• Essentially just independent single-agent RL

• If exploration > 0, will in theory converge to minimax



Self-Play in 2p0sum Perfect-Info Games

• Still may be vulnerable to adversarial 
attacks

• Neural net is limited in its ability to 
approximate minimax

• Finding an exploit is easier than 
defending against exploits
(especially in imperfect-info games!)

Wang et al. ICML-23



PPO in Rock-Paper-Scissors
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Fictitious Play
[G. W. Brown 1951]

● Initialize strategies for all players arbitrarily

● On each iteration, for each player:

○ Play a best response to the opponent’s average strategy over all iterations

● The average strategy over all iterations converges to minimax

● Rock Paper Scissors example:

○ Iteration 1: Players throw Rock (100% Rock)

○ Iteration 2: Players throw Paper (50% Rock, 50% Paper)

○ Iteration 3: Players throw Paper (33% Rock, 67% Paper)

○ Iteration 4: Players throw Scissors (25% Rock, 50% Paper, 25% Scissors)

○ …



Regret Matching and Hedge

● Fictitious Play always picks a best response to the opponent’s average

● Regret Matching and Hedge pick regularized best responses instead

 



Improving Regret Matching



2017 Brains vs AI [Brown & Sandholm Science-17]

• Libratus (our 2017 AI) against four of the best heads-up no-limit 
Texas Hold’em poker pros

• 120,000 hands over 20 days in January 2017

• $200,000 divided among the pros based on performance

• Won with 99.98% statistical significance

• Each human lost individually to Libratus



2017 Brains vs AI [Brown & Sandholm Science-17]

•120,000 hands of poker against a team of 
pros trying to exploit the bot

•Trained from self-play; no human data

•No deep neural networks



Limitations of FP / RM / Hedge

• Poor performance in single-agent RL
• First iteration is always random

• Policy improvement is slower

• Might require *many* iterations



New last-iterate algorithms

• Recent algorithms empirically converge to 
minimax and perform well in single-agent RL

• Regularized Nash Dynamics [Perolat et al. Science-22]

• Magnetic Mirror Descent [Sokota et al. ICLR-23]

• Similar to hedge but with additional 
regularization to a “magnet” policy



Aside: why haven’t we mentioned LLMs yet?

● Theorem: In a two-player zero-sum minimax equilibrium, 

“cheap talk” communication is useless

● Proof intuition:

○ Every minimax equilibrium in a game results in a unique 

value (v_1, -v_1) for players 1 and 2

○ A player 1 cheap talk action either increases v_1, 

decreases v_1, or has no effect

■ If it increases v_1, then player 2 simply ignores it

■ If it decreases v_1, then player 1 should not say it



What about non-two-player zero-sum games?

Central Claim:

Learning to cooperate with humans without using human data is a dead end



Ultimatum Game
• Alice is given $100

• First, Alice offers $0 - $100 to Bob

• Then, Bob must decide whether to accept or reject

﹘ If Bob accepts, then Alice and Bob keep their money

﹘ If Bob rejects, then Alice and Bob get nothing



● A popular strategy game introduced in the 50s
○ 7 players trying to conquer Europe in WW1
○ JFK and Kissinger’s favorite game

● Each turn involves private natural language negotiation

● Moves are done simultaneously

● Alliances and trust-building are key!

● Long considered a challenge problem for AI [1]
○ Research going back to the 80’s
○ Research picked up in 2019 with the rise of LLMs

[1] Dafoe et al. “Cooperative AI: machines must learn to find common ground”. 
Nature comment, 5/2021

Diplomacy



Support is key!

1v1
Fails

2v1
Succeeds

2v1
Succeeds



DORA: No-press Diplomacy from Scratch [1]

• DORA learns no-press Diplomacy through self-play

﹘ Similar to AlphaZero

• Performance in 2-player no-press Diplomacy:

﹘ Win rate: 86.5% +- 6.1% vs human experts

• Performance in 7-player no-press Diplomacy:

[1] [Bakhtin, Wu, Lerer, Brown. NeurIPS 2021] 



Option 1: Someone who, over a large enough sample 
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Option 1: Someone who, over a large enough sample 

size, wins head-to-head vs. any other player
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Not meaningful in general games!

Requires data on the population 
of players, i.e., human data



Treat humans as part of the environment

● Step 1: Collect a lot of human data and train an imitation model

● Step 2: Scale inference-time compute to better model humans

● Step 3: Scale RL with these human imitation models



Results in No-Press Diplomacy
[Bahktin et al. ICLR-2023 Best Paper Honorable Mention]

Diplodocus placed 1st in a 200-game real human tournament. (50 
games each bot).



● We entered CICERO anonymously in an online natural 

language Diplomacy league

● CICERO placed in the top 10% of players, and 2nd of 

19 players who played at least 5 games

○ Achieved more than 2x the average human score

CICERO Plays with Humans



Results in Hanabi
[Hu et al. arXiv-22]



Final Thoughts

● Two-player zero-sum games are a special case

● In general, AlphaGo-style self-play does not converge to an “optimal” policy

● But I am optimistic about research on alternatives!



Agent-Agent LLM Cooperation



OpenAI o1



OpenAI o1 → o3





Multi-Agent AI: Latency
● CoT is inherently serial

○ Latency eventually becomes a bottleneck

● Other test-time scaling techniques are parallel
○ Best-of-N / consensus
○ Lower latency, but less compute-efficient
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Multi-Agent AI: Diversity
● Reasoning models can multiply

large numbers, but why do that?

● Diversity is a strength
○ Can use the best model for

the particular query

● “Routing” is already a form of
multi-agent AI



Multi-Agent Collaboration Scaffolds Today




