
Introduction to training

LLMs for AI agents
LLM Agents MOOC series

Yann Dubois |Sep. 15th 2025

All views are my own, and the methods based on information found online (esp Kimi, LlaMA, DeepSeek)
(nothing is related to OpenAI, unless explicitly stated)

LLMs

• LLMs & chatbots took over the world

• How do train those?

2

All numbers are approximate from different open-source projects, especially LLaMA and DeepSeek and Kimi.

General LLM training pipeline

3

Pretraining
Predict next word on

internet

Data: > 10T tokens
Time: months
Compute cost: > $10M
Bottleneck: data & comp.

Reasoning RL
Think on questions with

objective answers

Data: ~1M problems
Time: weeks
Compute cost: > $1M
Bottleneck: RL env & hacks

Classic post-
training / RLHF
Max user utility & prefs

Data: ~100k problems
Time: days
Compute cost: > $100K
Bottleneck: data & evals

All numbers are approximate from different open-source projects, especially LLaMA and DeepSeek.

Only for reasoning models

Eg LLaMA 3 Eg DeepSeek R1 Eg LLaMA-instruct

Still called post-training

LLM training pipeline

4

• Architecture

• Training algorithm/loss

• Data & RL env

• Evaluation

• Systems and infra to scale

What people
have been

focusing on
until 2023

What
matters in
practice

LLM specializing pipeline

5

Finetuning
Second stage of posttraining to

domain specific data

Data: ~10k-100k problems
Time: days
Compute cost: ~$10k-$100K
Bottleneck: data & evals

Prompting
Art of asking the model what you

want

Data: 0
Time: hours
Compute cost: 0
Bottleneck: evals

Pretraining

Method

Data

Compute

Pretraining

• Goal: teach the model everything in the world

• Task: predict the next word

• Data: any reasonable data on internet

• > 10T tokens (20-40T for llama 4, 15T for DSv3)

• > 20B unique web pages

• Key since GPT-2 (2019)

7

AR Language Models

• Task: predict the next word

• Steps:

1. tokenize

2. forward

3. predict probability of next token

4. sample

5. detokenize

8

She likely prefers

dogs

Model

Inference only 1 2 3

5

A Simple Language Model: N-grams

9

• How can you learn what to predict?

• Eg how can you know what comes after the grass is

• Idea: statistics!

• Take all occurrences of the grass is on Wikipedia

• Predicted probability for X is

 P(X| the grass is) = Count(X| the grass is)/Count(the grass is)

• Problem:

• You need to keep count of all occurrences for each n-gram

• Most sentences are unique: this can’t generalize

• Solution: neural networks

10

https://lena-voita.github.io/nlp_course/language_modeling.html#intro

Neural Language Models

https://lena-voita.github.io/nlp_course/language_modeling.html#intro
https://lena-voita.github.io/nlp_course/language_modeling.html#intro
https://lena-voita.github.io/nlp_course/language_modeling.html#intro

Pretraining

Method

Data

Compute

Pretraining Data
12

• Idea: use all of the clean internet

• Note: internet is dirty & not representative of what we want. Practice:

1. Download all of internet. Common crawl: 250 billion pages, > 1PB (>1e6 GB), WARC file

2. Text extraction from HTML (challenges: math, boiler plate, etc.)

3. Filter undesirable content (e.g. NSFW, harmful content, PII)

4. Deduplicates (url/document/line). E.g. all the headers/footers/menu in forums are always same

5. Heuristic filtering. Rm low quality documents (e.g. # words, word length, outlier toks, dirty toks)

6. Model based filtering. Predict if page could be references by Wikipedia.

7. Data mix. Classify data categories (code/books/entertainment). Reweight domains using scaling

laws to get high downstream performance.

• Also: lr annealing on high-quality data, continual pretraining with longer context

Pretraining Data
13

The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale

NSFW blocklist, mostly
English, simple

document filtering
(repetition, length, etc)

200B -> 36B

Dedup for <100 docs
36B -> 20B

JS, len, lorem ipsum, {
36B -> 20B

Additional filters
20B -> 15B

Midtraining data
14

• Continued pretraining to adapt the model to desired properties / higher quality data (<1T toks)

• Data mix changes shifts: eg more scientific, coding, multilingual data

• Longer context extension: bump (eg 4 → 128k for DSv3)

• Desired formatting/instruction following

• Higher quality data

• Reasoning data

• …

Pre/mid training Data
15

• Collecting well data is a huge part of practical LLM (~the key)

• Lot of research to be done!

• A lot of secrecy:

• Common academic datasets:

• Closed: LLaMA 2 (2T tokens), LLaMA 3 (15T tokens), LLaMA 4 (20-40T)

• How do you process well and efficiently?

• How do you balance domains?

• Synthetic data?

• Multi-modal data?

• Competitive dynamics • Copyright liability

• C4 (150B tokens | 800GB)

• The Pile (280B tokens)

• Dolma (3T tokens)

• FineWeb (15T tokens)

Pretraining

Method

Data

Compute

Pretraining compute
17

• Empirically: for any type of data and model, the most important is how

much compute you spend on training (data & size)

• You can even predict performance with compute with scaling laws!

Scaling laws
[Kaplan+ 2020]

You can now do research at low
scale and then predict how well it
would hold at larger scale

Scaling laws: tuning
18

• You have 10K GPUs for a month, what model do you train?

• Old pipeline:

• Tune hyperparameters on big models (e.g. 30 models)

• Pick the best => final model is trained for as much as each filtered out ones (e.g. 1 day)

• New pipeline:

• Find scaling recipes (eg lr decrease with size)

• Tune hyperparameters on small models of different sizes (e.g. for <3 days)

• Extrapolate using scaling laws to larger ones

• Train the final huge model (e.g. >27 days)

Scaling laws for development
19

• Q: Should we use transformers or LSTM?

A: Transformers have a better constant and scaling rate (slope)

Scaling laws
[Kaplan+ 2020]

Scaling laws: eg Chinchilla
20

• Q: How do we optimally allocate training* resources (size vs data)?

Isoflop:
vary tokens &

parameters

A: Use 20:1 tokens for each parameter (20:1)

*doesn’t consider inference cost => in practice use larger (> 150:1)

Chinchilla
[Hoffmann+ 2022]

Isoflop:
vary tokens &

parameters

Best
parameters

for each
isoflop

Best tokens
for each
isoflop

Bitter lesson
21

• Bitter lesson: models improve with scale & Moore’s Law

 => “only thing that matters in the long run is the leveraging of computation.”

 http://www.incompleteideas.net/IncIdeas/BitterLesson.html

• Don’t spend time over complicating: do the simple things and scale them!

Bitter [Sutton 2019]

Image from Gwern

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://www.gwern.net/Scaling-hypothesis#if_slide_2

Training a SOTA model
22

• Example of current SOTA: LLaMA 3 400B

 Data: 15.6T tokens Parameters: 405B

• FLOPs: 6NP = 6 * 15.6e12 * 405e9 = 3.8 e25 FLOPs

• Compute: 16K H100 with average throughput of 400 TFLOPS

• Time: 3.8e25 / (400e12 * 3600) = 26M GPU hour / (16e3 * 24) = 70 days

• Cost: rented compute + salary=~$2/h*26Mh = ~$52M

• Carbon emitted= 26Mh*0.7kW*0.24kg/kWh = 4400 tCO2eq

• Next model? ~10x more FLOPs

~2x less than executive order

~40 tok/param => train
compute optimal

From paper: ~30M h

$50-80M

~2k return tickets JFK-LHR

23

Pretraining
Predict next word on internet

Data: > 10T words
Time: months
Compute cost: > $10M
Bottleneck: data & comp.

Examples:

• DeepSeek v3

• LLaMA 4

Post-training

Method

Data

Compute

Language Modeling ≠ assisting users
25

• Problem: language modeling is not what we want

Classic PT / alignment / IF

• Goal: steer the model to be useful on real-world tasks

• Task: maximize answer preferences of humans

• Data: 5k-500k problems

• Important since ChatGPT (2022)

26

Reasoning

• Goal: teach the model to reason

• Task: answer correctly

• Data: any hard task with verifiable

answer

• Important since o1(2024)

27

• Goal: test-time scaling

Reasoning
28

Post-training

Methods:

 SFT

 RL

Data

Compute

Eg task: “alignment”
30

• We want LLM follows user instructions and designer’s desires (eg moderation)

• Background:

• data of desired behaviors is what we want but scarce and expensive

• pretraining data scales but is not what we want

• Idea: finetune pretrained LLM on a little desired data => “post-”training

X

• Idea: finetune the LLM with language modeling of the desired answers

• How do we collect the data? Ask humans

Supervised finetuning (SFT)
31

Next word prediction “supervised”

OpenAssistant
[Kopf+ 2023]

This was the ~key to GPT3 -> ChatGPT model!

• Problem: human data is slow to collect and expensive

• Idea: use LLMs to scale data collection

Scalable data for SFT: eg Alpaca
32

Started for academic replication of ChatGPT but “synthetic data generation” is now hot topic!

Alpaca
[Taori+ 2023]

• Problem: LLM-generated data ~assumes that you have a smarter LLM

• Idea: use rejection sampling based on verifiers

1. Temporary LLM generates many answers

2. Keep answer if it’s correct (eg, passes test case), or preferred over others

Scalable data for SFT: eg DeepSeek R1
33

Image from Jay Alammar

DeepSeek-R1
[DeepSeek-AI 2025]

https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1

• Instruction following

• Desired format or style

• Tool use [eg Kimi 2 or xLAM]

• Early reasoning [eg DeepSeek R1]

• … anything where you can get good input, output pairs…

• SFT is either seen as a final stage or as a preparation for RL

What to learn during SFT
34

• SFT pipelines can use complex system to build useful SFT data

• Eg Kimi K2 uses LLM simulated user & tools, and rubric based rejection sampling to

build data for agentic tool use

SFT pipelines can be complex: eg Kimi k2
35

Kimi K2
[Kimi team 2025]

>3k >20k

Grounded for code

• You learn quickly from SFT! ~ 10k are sufficient for learning style & IF

• Just learns the format of desired answers (length, bullet points, …)

• The knowledge is already in the pretrained LLM => Specializes to one “type of user”

• DeepSeek-R1 uses ~800K examples for learning reasoning using R1-zero

Scalable data for SFT: quantity?
36

LIMA
[Zhou+ 2023]

Post-training

Methods:

 SFT

 RL

Data

Compute

• Problem: SFT is behavior cloning of humans

1. Bound by human abilities: humans may prefer things that they are not able to generate

2. Hallucination: cloning correct answer teaches LLM to hallucinate if it didn’t know about it!

3. Price: collecting ideal answers can be expensive

Reinforcement learning
38

If LLM doesn’t know [Bivens 2013] => teaches the model to make up plausibly sounding references

• Idea: maximize desired behavior rather than clone it

• Read: DeepSeek R1 & Kimi K2

• Key: where the reward comes from:

• Rule-based rewards (eg string match for close-ended QA, or passing coding function)

• Reward model trained to predict human preferences (RLHF)

• LLM as a judge

• …

Reinforcement learning
39

Kimi K2
[Kimi team 2025]

DeepSeek-R1
[DeepSeek-AI 2025]

Image from Jay Alammar

https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1

Reinforcement learning: DeepSeek R1
40

Image from Jay Alammar

https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1

DeepSeek R1 optimizes GRPO which uses MC estimates for computing the advantage

Similar loss for Kimi K1.5 & K2

Reinforcement learning: GRPO
41

DeepSeek-R1
[DeepSeek-AI 2025]

• Sampling is an important bottleneck since you sample multiple outputs per problem

• Infra is key, especially for agents:

• Long rollouts: Kimi pauses long tail rollouts

• Environment feedback can be slow: Kimi uses concurrent rollouts & dedicated services for envs

RL: Infra is key
42

Kimi K2
[Kimi team 2025]Communication < 30 sec

Engines are collocated

to avoid communication

overhead

• Idea: maximize human preference rather than clone their behavior

• Made ChatGPT

• Pipeline:

1. For each instruction: generate 2 answers from a pretty good model (SFT)

2. Ask labelers to select their preferred answers

3. Finetune the model to generate more preferred answers (PPO or DPO)

 How?

RL from Human Feedback (RLHF)
43

Instruction

RLHF: gains
44

Learn to summarize
[Stiennon+ 2020]

AlpacaFarm
[Dubois+ 2023]

Pretrain

PPO DPO

SFT

• Data: human crowdsourcing

RLHF: human data
45

guidelines

example

Pretrain Posttrain

LLM Opinions
[Santurkar+ 2023]

Long way to go
[Singhal+ 2024]

• Slow & expensive

• Hard to focus on correctness rather than form (eg length)

• Annotator distribution shifts its behavior

• Crowdsourcing ethics

RLHF: challenges of human data
46

• Idea: replace human preferences with LLM preferences

RLHF: LLM data
47

AlpacaFarm
[Dubois+ 2023]

Works surprisingly well!

Evaluation

Close-ended

Open-ended

Importance of evaluation in AI

49

Quantify progress towards desired task to:

Identify
improvements

Select
models

Decide if
production ready

Close-ended Evaluation
50

• Idea: few possible answers =>automate verification

• Eg MMLU

MMLU
[Hendrycks+ 2020]

Evaluation: challenges
51

• Sensitivity to prompting/inconsistencies

Evaluation: challenges
52

• Sensitivity to prompting/inconsistencies

• Train & test contamination (~not important for development)

Evaluation

Close-ended

Open-ended

• How do we evaluate something like ChatGPT?

• Challenges:

• Large diversity

• Open-ended tasks => hard to automate

• Idea: ask for annotator preference between answers

Evaluation: aligned LLM
54

InstructGPT
[Ouyang+ 2022]

• Idea: have users interact (blinded) with two chatbots, rate which is better.

• Problem: cost & speed!

Human evaluation: eg ChatBot Arena
55

ChatBot Arena
[Chiang+ 2024]

• Idea: use LLM instead of human

• Steps:

• For each instruction: generate output by baseline and model to eval

• Ask GPT-4 which output is better

• Average win-probability => win rate

• Benefits:

• 98% correlation with ChatBot Arena

• < 3 min and < $10

• Challenge: spurious correlation

LLM evaluation: eg AlpacaEval
56

Evaluate

LLM

VS

AlpacaEval
[Li+ 2023]

Systems

• Problem: everyone is bottlenecked by compute!

• Why not buy more GPUs?

• GPUs are expensive and scarce!

• Physical limitations (eg communication between GPUs)

• => importance of resource allocation (scaling laws) and optimized pipelines

Systems
58

• Massively parallel: same instruction applied on all thread but different inputs.

=> Optimized for throughput!

Systems 101: GPUs
59

SM
Streaming

Multiprocessors

• Massively parallel

• Fast matrix multiplication: special cores >10x faster than other floating point ops

Systems 101: GPUs
60

• Massively parallel

• Fast matrix multiplication

• Compute > memory & communication:

• Hard to keep processors fed with data

Systems 101: GPUs
61

DataMovement
[Ivanov+ 2020]

BERT transformer

Matmul

Activation

• Massively parallel

• Fast matrix multiplication

• Compute > memory & communication

• Memory hierarchy:

• Closer to cores => faster but less memory

• Further from cores => more memory but slower

Systems 101: GPUs
62

• Massively parallel

• Fast matrix multiplication

• Compute > memory & communication

• Memory hierarchy

• Metric: Model Flop Utilization (MFU)

• Ratio: observed throughput / theoretical best for that GPU

• 50% is great!

Systems 101: GPUs
63

• Fewer bits => faster communication & lower memory consumption

• For deep learning: decimal precision ~doesn’t matter except exp & updates

• Matrix multiplications can use bf16 instead of fp32

• For training: Automatic Mixed Precision (AMP)

• Weights stored in fp32, but before computation convert to bf16

• Activation in bf16 => main memory gains

• (Only) matrix multiplication in bf16 => speed gains

• Gradients in bf16 => memory gains

• Master weights updated fp32 => full precision

Systems: low precision
64

• Problem:

• communication is slow

• every new PyTorch line moves variables to global memory

• Idea: communicate once

• torch.compile

Systems: operator fusion
65

DRAM SRAM
&

Compute

E.g. assume that thread can only keep 8 values in memory.
Then have to reread all values (no cache hits)!

• Idea: group and order threads to minimize global memory access (slow)

• Eg matrix multiplication

• Compute matrix multiplications in subphases to reuse memory

1. Load M_00 and N_00 tiles into SM

2. Compute partial sums for P

3. Load M_00 and N_20 into SM

4. …

• => reuse reads (~cache)

• T reduction of global reads

Systems: tiling
66

• Idea: kernel fusion, tiling, recomputation for attention!

• 1.7x end to end speed up!

Systems: eg FlashAttention
67

FlashAttention
[Dao+ 2022]

• Problem:

• model very big => can’t fit on one GPU

• Want to use as many GPUs as possible

• Idea: split memory and compute across GPUs

• Background: to naively train a P parameter model you need at least 16P GB of DRAM

• 4P GB for model weights

• 2 * 4P GB for optimizer

• 4P GP for gradients

• E.g. for 7B model you need 112GB!

Systems: parallelization
68

• Goal: use more GPUs

• Naïve data parallelization:

1. Copy model & optimizer on each GPU

2. Split data

3. Communicate and reduce (sum) gradients

• Pro: use parallel GPU

• Con: no memory gains!

Systems: data parallelism
69

• Goal: split up memory

• Idea: each GPU updates subset of weights and them before next step => sharding

Systems: data parallelism
70

ZeRO
[Rajbhandari+ 2019]

• Problem: data parallelism only works if batch size >= # GPUS

• Idea: have every GPU take care of applying specific parameters (rather than updating)

• Eg pipeline parallel: every GPU has different layer

Systems: model parallelism
71

GPipe
[Huang+ 2018]

• Problem: data parallelism only works if batch size >= # GPUS

• Idea: have every GPU take care of applying specific parameters (rather than updating)

• Eg pipeline parallel: every GPU has different layer

• Eg tensor parallel: split single matrix across GPUs and use partial sum

Systems: model parallelism
72

Megatron-LM:
[Shoeybi+ 2019]

• Idea: models are huge => not every datapoint needs to go through every parameter

• Eg Mixture of Experts: use a selector layer to have less “active” parameter => same FLOPs

more parameters

Systems: architecture sparsity
73

Sparse Expert Models:
[Fedus+ 2012]

Questions?

LLM evaluation: Perplexity
75

• Idea: validation loss

• To be more interpretable: use perplexity

• avg per token (~independent of length)

• Exponentiate => units independent of log base

• Perplexity: between 1 and |Vocab|

• Intuition: number of tokens that you are hesitating between

𝑃𝑃𝐿 𝑥1:𝐿 = 2
1
𝐿

 ℒ(𝑥1:𝐿) = ∏ 𝑝 𝑥𝑖 𝑥1:𝑖−1
−1/𝐿

LLM evaluation: Perplexity
76

Between 2017-2023, models went from ”hesitating” between ~70 tokens to <10 tokens

Perplexity not used anymore for academic benchmark but still important for development

• e.g. LLM prefers longer outputs

• Possible solution: regression analysis / causal inferece to “control” length

LLM evaluation: spurious correlation
77

AlpacaEval LC
[Dubois+ 2023]

Wrap-up

Haven’t touched upon:

Going further:

• CS224N: more of the background and historical context. Some adjacent material.

• CS324: more in-depth reading and lectures.

• CS336: you actually build your LLM. Heavy workload!

Outlook
79

• Architecture: MoE & SSM

• Decoding & inference

• UI & tools: ChatGPT

• Multimodality

• Misuse

• Context size

• Data wall

• Legality of data collection

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences (~3 letters)

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

Start with one token per character

Merge common pairs of tokens into a token

Repeat until desired vocab size

80

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size

81

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size

82

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size or all merged

83

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size or all merged

84

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size or all merged

85

tokenizer:
text to token
index

Tokenizer

• Why?

• More general than words (eg typos)

• Shorter sequences than with characters

• Idea: tokens as common subsequences

• Eg: Byte Pair Encoding (BPE). Train steps:

1. Take large corpus of text

2. Start with one token per character

3. Merge common pairs of tokens into a token

4. Repeat until desired vocab size or all merged

86

tokenizer:
text to token
index

	Slide 1: Introduction to training LLMs for AI agents
	Slide 2: LLMs
	Slide 3: General LLM training pipeline
	Slide 4: LLM training pipeline
	Slide 5: LLM specializing pipeline
	Slide 6: Pretraining
	Slide 7: Pretraining
	Slide 8: AR Language Models
	Slide 9: A Simple Language Model: N-grams
	Slide 10
	Slide 11: Pretraining
	Slide 12: Pretraining Data
	Slide 13: Pretraining Data
	Slide 14: Midtraining data
	Slide 15: Pre/mid training Data
	Slide 16: Pretraining
	Slide 17: Pretraining compute
	Slide 18: Scaling laws: tuning
	Slide 19: Scaling laws for development
	Slide 20: Scaling laws: eg Chinchilla
	Slide 21: Bitter lesson
	Slide 22: Training a SOTA model
	Slide 23
	Slide 24: Post-training
	Slide 25: Language Modeling ≠ assisting users
	Slide 26: Classic PT / alignment / IF
	Slide 27: Reasoning
	Slide 28: Reasoning
	Slide 29: Post-training
	Slide 30: Eg task: “alignment”
	Slide 31: Supervised finetuning (SFT)
	Slide 32: Scalable data for SFT: eg Alpaca
	Slide 33: Scalable data for SFT: eg DeepSeek R1
	Slide 34: What to learn during SFT
	Slide 35: SFT pipelines can be complex: eg Kimi k2
	Slide 36: Scalable data for SFT: quantity?
	Slide 37: Post-training
	Slide 38: Reinforcement learning
	Slide 39: Reinforcement learning
	Slide 40: Reinforcement learning: DeepSeek R1
	Slide 41: Reinforcement learning: GRPO
	Slide 42: RL: Infra is key
	Slide 43: RL from Human Feedback (RLHF)
	Slide 44: RLHF: gains
	Slide 45: RLHF: human data
	Slide 46: RLHF: challenges of human data
	Slide 47: RLHF: LLM data
	Slide 48: Evaluation
	Slide 49
	Slide 50: Close-ended Evaluation
	Slide 51: Evaluation: challenges
	Slide 52: Evaluation: challenges
	Slide 53: Evaluation
	Slide 54: Evaluation: aligned LLM
	Slide 55: Human evaluation: eg ChatBot Arena
	Slide 56: LLM evaluation: eg AlpacaEval
	Slide 57: Systems
	Slide 58: Systems
	Slide 59: Systems 101: GPUs
	Slide 60: Systems 101: GPUs
	Slide 61: Systems 101: GPUs
	Slide 62: Systems 101: GPUs
	Slide 63: Systems 101: GPUs
	Slide 64: Systems: low precision
	Slide 65: Systems: operator fusion
	Slide 66: Systems: tiling
	Slide 67: Systems: eg FlashAttention
	Slide 68: Systems: parallelization
	Slide 69: Systems: data parallelism
	Slide 70: Systems: data parallelism
	Slide 71: Systems: model parallelism
	Slide 72: Systems: model parallelism
	Slide 73: Systems: architecture sparsity
	Slide 74: Questions?
	Slide 75: LLM evaluation: Perplexity
	Slide 76: LLM evaluation: Perplexity
	Slide 77: LLM evaluation: spurious correlation
	Slide 78: Wrap-up
	Slide 79: Outlook
	Slide 80: Tokenizer
	Slide 81: Tokenizer
	Slide 82: Tokenizer
	Slide 83: Tokenizer
	Slide 84: Tokenizer
	Slide 85: Tokenizer
	Slide 86: Tokenizer

